Contributions et Tribunes Tutoriel TAL pour les débutants : Classification de texte

Pour approfondir le sujet

Sur le même thème :

Synapse Développement, acteur majeur du TAL, fête ses 25 ans

  Synapse Développement, société toulousaine spécialisée dans le traitement automatisé du langage, notamment connue pour son logiciel Cordial, fêtait en ce début de mois de...

Intelligence artificielle et technologies des langues : l’ordinateur passe la barrière de la langue

Ce 12 janvier 2021, le GdR TAL organise une journée consacrée aux récentes avancées des technologies des langues pour des applications au cœur de...

Google I/O : annonce de la technologie d’intelligence artificielle MUM, plus puissante que BERT

Cette édition 2021 de Google I/O qui se déroule en streaming du 18 au 20 mai est, comme nous pouvions nous y attendre, l'occasion...

Google I/O : annonce du chatbot LaMDA, capable de dialoguer naturellement avec un humain

Après avoir annoncé ses nouveaux TPU sa technologie d'intelligence artificielle MUM, Google présente son modèle Language Model for Dialogue Applications (LaMDA) dans le cadre...

Tutoriel TAL pour les débutants : Classification de texte

Hello !

Si vous avez envie de faire du machine learning avec du texte mais ne savez pas par où commencer, ce tutoriel est fait pour vous 😉 Le traitement automatique du langage naturel (ou NLP pour Natural Language Processing) est une branche à part entière de l’IA qui permet de réaliser plusieurs tâches :

  • Traduction de texte
  • Résumé automatique de texte
  • Analyse de sentiment
  • Reconnaissance d’entités nommées (ex : nom propre ou lieu)

Et bien d’autres encore. A l’heure des assistants vocaux et des smartphones de plus en plus puissants le NLP est au cœur de nombreuses problématiques. Le Deep Learning a révolutionné le domaine en aidant l’algorithme à prendre en compte le contexte notamment.

Je vous propose ici de découvrir quelques étapes importantes lorsque l’on traite des données textuelles, avec en trame de fond une tâche de classification.

Le but de ce tutoriel est de déterminer si un texte est considéré comme un spam ou non. Pour cela, nous utiliserons un dataset composé de 1956 commentaires labellisés (spam : 1, ham : 0) en provenance de 5 vidéos YouTube populaires en 2012. Les données sont disponibles ici.

Nous utiliserons python et les librairies scikit-learn (fournie avec anaconda) et NLTK (Natural Language Toolkit) que vous pouvez installer avec la commande conda install -c anaconda nltk sur anaconda prompt.

Si vous n’avez pas Anaconda, vous pouvez le télécharger via ce lien, ce que je vous conseille tant Jupyter notebook est pratique en Data Science.

Première étape : Importer les données

Dans un premier temps, ouvrez un notebook et importez les librairies suivantes. Nous allons voir au fur et à mesure quoi utiliser 😉

tal1

Il est temps de charger les données ! Puisque nous n’avons que 5 fichiers csv, nous allons les charger un par un dans un dataframe, puis les concaténer et enfin ne garder que les deux colonnes qui nous intéressent, à savoir CONTENT, le commentaire, et CLASS qui est le label associé. Nous pouvons voir que nous avons un nombre presque similaire de chacune des classes, ce qui est toujours une bonne chose pour une tâche de classification puisqu’il n’y a pas de classe biaisée.

tal2

Voyons à quoi ressemblent quelques commentaires pris au hasard.

tal3

Avant de passer à la phase de classification, il faut nettoyer le texte ! Cette phase, appelée preprocessing en anglais, est essentielle et sur elle repose 80% de la réussite de tel ou tel algorithme.

Preprocessing des données

Le preprocessing comporte plusieurs étapes souvent complémentaires. Nous allons ici découvrir les plus courantes, à savoir :

  • Normalisation du texte
  • Tokénization
  • Suppression des stopwords
  • Lemmatization (ou Stemming)
  • N-grams

Normalisation

Normaliser le texte signifie le mettre à la même casse, souvent tout en minuscule.

tal4

Tokénization

Passons à la Tokénization ! C’est un procédé très simple qui divise une chaîne de caractère en tokens, c’est-à-dire des éléments atomiques de la chaîne. Un token n’est pas forcément un mot, ce peut être par exemple un signe de ponctuation. NLTK fournit plusieurs types de tokénization, comme la tokénization par mot ou par phrase. En effet, si on considère que la fin d’une phrase correspond à un point puis un espace puis une majuscule, nous aurions du mal avec les acronymes ou les titres (Dr. Intel). Ce que NLTK propose, ce sont donc des tokenizers déjà entraînés sur un set de documents (ou corpus). Dans notre cas, nous n’avons besoin que du tokenizer de mots :

tal5

Suppression des stop words

Vient ensuite l’étape de suppression des stopwords qui est cruciale, car elle va enlever dans le texte tous les mots qui n’ont que peu d’intérêt sémantique. Les stopwords sont en effet tous les mots les plus courants d’une langue (déterminants, pronoms, etc..). NLTK dispose d’une liste de stopwords en anglais (ou dans d’autres langues).

tal8

stopW est maintenant une liste, il est donc facile d’y rajouter certains mots en fonction de la tâche. Par exemple, si on dispose de reviews de problèmes sur un modèle de téléphone, il peut être utile d’enlever le mot « téléphone » tant celui-ci sera présent. Il est maintenant simple d’enlever les stop words d’une liste de tokens avec une compréhension de liste.

tal9

Stemming et Lemmatization

Ces deux méthodes sont très couramment utilisées dans le traitement du langage naturel car permettent de représenter sous un même mot plusieurs dérivées du mot. Dans le cas du Stemming, nous allons uniquement garder le radical du mot (ex : dormir, dortoir et dors deviendront dor). La lemmatization, moins radicale 😉, va laisser au mot un sens sémantique mais va éliminer le genre ou le pluriel par exemple.

tal10

Par défaut, le lemmatizer de NLTK fait effet sur les noms, maison peut lui spécifier d’autres PoS (pour Part-of-Speech) comme le verbe ou l’adjectif, et l’employer dans une composition de fonction comme suit.

tal11

Nous pouvons maintenant appliquer en un coup la lemmatization et la normalisation à notre dataframe. Ici, nous appliquons la tokénization dans le but de faire la lemmatization, mais nous rejoignons les tokens (avec la fonction join) car nous allons ici avoir besoin de cette forme plus tard, tout dépend de l’application.

tal12

Dans la pratique, le Stemming est employé surtout pour effectuer des recherches sur un grand nombre de document (ex : moteur de recherche), pour le reste, la lemmatization est souvent préférée.

Ces méthodes sont employées pour deux raisons :

  • Donner le même sens à des mots très proches mais d’un genre différent (ou éliminer le pluriel, etc…)
  • Réduire la sparsité des matrices utilisées dans les algorithmes (voir partie suivante sur TFIDF)

N-grams

Les n-grams sont tous simplement des suites de mots présents dans le texte. Ce que nous traitions jusqu’à présent étaient uniquement des unigrammes, nous pouvons ensuite rajouter des bigrammes ou même des trigrammes. Un bigramme est un couple de mot qui se suivent dans le texte, nous pouvons les trouver facilement grâce à NLTK :

tal13

Si l’intérêt des bigrammes ne saute pas aux yeux, considérez le cas suivant : « I want to go the White House » Les unigrammes ne détecteront pas la co-occurrence des termes « White » et « House » tandis que l’usage des bigrammes le ferait ressortir comme un seul et même terme. En effet, après le bout de code montré au-dessus, il convient de sélectionner uniquement les bigrammes qui co-occurent un nombre minimum de fois. La librairie Gensim le fait très simplement mais nous allons réserver cela à un autre tutoriel.

Classification

Vous le savez peut-être mais les algorithmes n’aiment pas les mots… Heureusement pour nous, il existe des méthodes simples permettant de convertir un document en une matrice de mot. Ces matrices étant souvent creuses (sparse en anglais), c’est-à-dire pleines de 0 avec peu de valeurs, la lemmatization aide à réduire leurs tailles. Afin de convertir ces phrases en matrice, nous allons voir une méthode que l’on appelle TFIDF (Term Frequency – Inverse Document Frequency).

TFIDF

TFIDF est une approche bag-of-words (bow) permettant de représenter les mots d’un document à l’aide d’une matrice de nombres. Le terme bow signifie que l’ordre des mots dans la phrase n’est pas pris en compte, contrairement à des approches plus poussées de Deep Learning (word embeddings : word2vec, GLoVE). Néanmoins, TFIDF est une méthode efficace utilisée dans de nombreux outils de querying puisqu’elle donne de l’importance aux mots qui apparaissent de temps en temps mais pas trop, tout en en limitant l’importance des mots qui apparaissent souvent.

TFIDF est composé de ces deux termes :  tal14

Avec  la fréquence du terme  dans un document (dans notre cas un commentaire).  étant le nombre de fois où le terme apparaît dans le document et  le nombre de mots du document.

Plus tf est élevé, plus le mot a de l’importance. Il nous reste à calculer IDF :

tal15

Ou n est le nombre de documents et t∈d le nombre de documents où le terme  est présent.

Nous avons enfin tƒidƒ(t)=tƒ(t) x idƒ(t)  pour un document en particulier.

C’est un bon exercice de reproduire cet algorithme from scratch en python. Comme souvent, il est présent sur plusieurs librairies, notamment scikit-learn. En plus de cela, le tfidf vectorizer de scikit-learn nous permet directement de spécifier les stop words que l’on souhaite, mais aussi le nombre de N-grams que l’on souhaite prendre en compte, ainsi que plusieurs autres paramètres. Dans notre cas, nous allons ajouter les bigrammes et également prendre en compte les stopwords.

tal16

La matrice que nous récupérons comporte quand même 13808 colonnes (et le même nombre de lignes qu’au départ, soit 1956) ! Comme vous pouvez le constater, nous ne voyons ici que des zéros, ce qui est normal puisque sur ces 13808 tokens, seuls quelques-uns sont présent dans chaque commentaire.

Support Vector Machine

Une machine à vecteurs de support (SVM) est un algorithme permettant de réaliser des tâches de classification ou de régression, très en vogue il y a quelques années mais depuis largement surpassé par les réseaux de neurones profonds. Néanmoins, il fonctionne bien sur des données textuelles. Son principe est de séparer au maximum les exemples tirés des différentes classes, on le qualifie de hard margin classifier comme vous pourrez le voir sur l’exemple suivant.

tal17

Si vous voulez découvrir comment cet algorithme fonctionne, je vous invite à consulter ce lien (bases en maths requises).

Avant de tester le modèle, nous allons séparer nos données en un jeu d’entraînement et un jeu de test, afin d’évaluer la qualité de notre modèle, puis nous pouvons directement entraîner le modèle et effectuer des prédictions sur le jeu de test. Avec un score F1 assez élevé et une matrice de confusion concluante, nous pouvons voir que nos résultats sont bons.

tal18

 

Pour rappel, une matrice de classification nous renseigne sur le nombre de spam/ham correctement classés ou bien sur ceux qui ont été mal classés.

tal19

Le score F1 est une métrique très utile dans les tâches de classification, nous indiquant à la fois la précision et le recall du modèle, qui se calculent grâce à la matrice de confusion ci-dessus et dont vous pourrez trouver le détail sur wikipédia 😉

C’est tout pour ce tutoriel ! Si vous avez des commentaires n’hésitez pas, je compte poursuivre ce tutoriel par un autre montrant comment déterminer des topics ou mots-clés dans un ensemble de documents.

Source image :

https://commons.wikimedia.org/wiki/File:SVM_margin.png

Contributeur expert

Victor Bigand

Victor Bigand est étudiant en Big Data et Machine Learning.

Partager l'article

Deux ans après l’arrivée de ChatGPT, comment la GenAI transforme la recherche en ligne et le marketing

Alors que ChatGPT vient de fêter son second anniversaire et compte aujourd'hui plus de 300 millions d'utilisateurs hebdomadaires, le rapport "Online Search After ChatGPT:...

Llama 3.3 70B : Meta dévoile son dernier ajout à la famille Llama 3, un modèle particulièrement efficace

Alors que Meta prépare le lancement des premiers modèles Llama 4 pour le début de l'année prochaine, l'entreprise a dévoilé en fin de semaine...

AgentLab, un framework open source pour le développement et l’évaluation des agents Web

Lancé par ServiceNow, AgentLab est un framework open source visant à faciliter le développement et l'évaluation d'agents Web. Son objectif principal est de soutenir...

Pleias : des modèles de langages ouverts pour une IA éthique et transparente

Pleias, une start-up française, annonce le lancement de sa première famille de grands modèles de langage (LLM), définissant de nouvelles références en matière...