Actualité Tutoriel Comprendre les réseaux de neurones convolutifs

Pour approfondir le sujet

Sur le même thème :

FastGCN : Une approche deep learning scalable pour les graphes massifs

Les modèles de réseaux de neurones convolutifs sous forme de graphe (GCN) se montrent particulièrement efficaces dans le cadre de l'apprentissage semi-supervisé. Les chercheurs Jie Chen, Tengfei...

Focus sur trois projets de recherches pour mieux comprendre le comportement animal

Les projets impliquant l'intelligence artificielle et les animaux semblent se développer progressivement. Que ce soit pour lutter contre l'extinction des éléphants d'Afrique, reconnaitre les...

MATLAB 2018b comprend une Deep learning Toolbox

Mathworks a dévoilé la nouvelle version de MATLAB. Cette version 2018b comprend une Deep Learning Toolbox. Elle est focalisée sur le développement d'applications d'intelligence...

Thibault Neveu, chercheur en IA, propose une série de vidéos d’initiation au Deep Learning

Thibault Neveu, chercheur en intelligence artificielle, a créé en septembre 2017 une chaîne de vidéos Youtube consacrée à l'initiation au Deep Learning. Partageant nos valeurs...

Comprendre les réseaux de neurones convolutifs

Thibault Neveu aborde les réseaux à convolution  (CNN), très utilisés dans les applications graphiques (traitement et reconnaissance d’images ou vidéos), mais également dans les systèmes de recommandation.

Les réseaux à convolution sont notamment très utilisés pour l’analyse d’images. Les deux  caractéristiques principales des réseaux convolutifs sont qu’ils utilisent des filtres (kernel) et mettent en oeuvre du pooling.

Les filtres analysent les images zones par zones. Chaque filtre se spécialise de façon à reconnaître des motifs (patterns). Un filtre peut par exemple se spécialiser dans la détection des contours, tandis qu’un autre reconnaîtra certaines formes. La convolution a pour effet d’augmenter la profondeur de la matrice correspondant à l’image, puisque chaque filtre lui ajoutera une couche. Une image qui a une profondeur de 3 couches (le nombre 3 correspondant aux 3 canaux RGB) pourra ainsi résulter en une matrice d’une profondeur de 5, si le réseau convolutif est constitué de 5 filtres.

Le pooling permet quant à lui de réduire la taille d’une image en n’en conservant que les pixels les plus importants. Cela a pour effet de déformer l’image en perdant le positionnement précis des pixels. Cet effet est en fait bénéfique, puisqu’il permet de limiter les risques de surapprentissage. A titre d’exemple, un système de détection des visages aura tout intérêt à apprendre qu’un visage est constitué de deux yeux, d’un nez et d’une bouche, mais il est préférable qu’il n’apprenne pas par coeur l’espacement au pixel près entre ces différents éléments du visage, puisque leur position peut varier d’une personne à l’autre. Il existe d’autres techniques que le pooling, notamment amenées par les capsule Networks, nouvelle technique qui ne sera pas abordée dans le cadre de ce tutoriel sur les réseaux convolutifs.

Accéder à la vidéo suivante tutoriel : implémenter un réseau de neurones convolutif.


1ère Marketplace de l'IA et de la transformation numérique vous recommande :
Pluralisme par Magic LEMP

Magic lemp et lexbase ont lancé le site pluralisme.fr, première base de discours politique issue des médias et généré en temps (quasi) réel. le sit...

 

Contributeur expert

Thibault Neveu

Thibault Neveu est jeune chercheur en intelligence artificielle. Il fut membre de la section rech

Partager l'article

Comment Earth Species Project utilise l’IA pour décoder la communication animale

Alors que l'actualité porte sur des technologies comme ChatGPT, basées sur le traitement du langage naturel, des organisations à l'instar d'Earth Species Project (ESP),...

Innovation Drones en Normandie : une équipe de l’ESIGELEC remporte le Challenge NAE 2022-2023

NAE, réseau normand des acteurs du domaine aéronautique, spatial, défense et sécurité, organise depuis 2016 un challenge contribuant à la compréhension des opportunités et...

OPERA annonce l’intégration ChatGPT à son navigateur Web

Opera a annoncé récemment l’intégration prochaine de services de contenu généré par ChatGPT à la barre latérale de son navigateur. À cette occasion, la...

La conférence Dataquitaine 2023 : IA, Recherche Opérationnelle & Data Science se déroulera le 2 mars prochain

La conférence Dataquitaine se veut un forum ouvert et appliqué autour des questions qui dérivent de l’optimisation, de l’intelligence artificielle et de la recherche...
Recevoir une notification en cas d'actualité importante    OK Non merci