Actualité Tutoriel Comprendre les réseaux de neurones convolutifs

Pour approfondir le sujet

Le corpus d’articles arXiv est désormais disponible sur Kaggle

Le corpus d'articles arXiv permet depuis plus de 30 ans à la communauté de chercheurs et au public d'avoir accès aux articles scientifiques dans...

Scikit-learn, SOFA, Coq, Pharo : Inria lance son Academy de formation continue dédiée aux logiciels libres

Inria a présenté fin juillet son nouveau dispositif de formation continue. Centré sur les logiciels libres cette structure permettra l’accès aux grands noms des...

Partenariat Life & Soft et CEA en bio-informatique, génomique, intelligence artificielle et technologies d’imagerie de pointe

Ce 4 août, Life & Soft et le CEA ont présenté officiellement leur accord de collaboration. Signé en avril 2020 pour une durée de...

Machine learning : L’Université d’Oxford et Atos installeront le plus grand super calculateur du Royaume-Uni

Atos et l'Université d'Oxford ont signé un contrat de quatre ans et d'une valeur de 5 millions de livres sterling pour un nouveau supercalculateur de...

Comprendre les réseaux de neurones convolutifs

Thibault Neveu aborde les réseaux à convolution  (CNN), très utilisés dans les applications graphiques (traitement et reconnaissance d’images ou vidéos), mais également dans les systèmes de recommandation.

Les réseaux à convolution sont notamment très utilisés pour l’analyse d’images. Les deux  caractéristiques principales des réseaux convolutifs sont qu’ils utilisent des filtres (kernel) et mettent en oeuvre du pooling.

Les filtres analysent les images zones par zones. Chaque filtre se spécialise de façon à reconnaître des motifs (patterns). Un filtre peut par exemple se spécialiser dans la détection des contours, tandis qu’un autre reconnaîtra certaines formes. La convolution a pour effet d’augmenter la profondeur de la matrice correspondant à l’image, puisque chaque filtre lui ajoutera une couche. Une image qui a une profondeur de 3 couches (le nombre 3 correspondant aux 3 canaux RGB) pourra ainsi résulter en une matrice d’une profondeur de 5, si le réseau convolutif est constitué de 5 filtres.

Le pooling permet quant à lui de réduire la taille d’une image en n’en conservant que les pixels les plus importants. Cela a pour effet de déformer l’image en perdant le positionnement précis des pixels. Cet effet est en fait bénéfique, puisqu’il permet de limiter les risques de surapprentissage. A titre d’exemple, un système de détection des visages aura tout intérêt à apprendre qu’un visage est constitué de deux yeux, d’un nez et d’une bouche, mais il est préférable qu’il n’apprenne pas par coeur l’espacement au pixel près entre ces différents éléments du visage, puisque leur position peut varier d’une personne à l’autre. Il existe d’autres techniques que le pooling, notamment amenées par les capsule Networks, nouvelle technique qui ne sera pas abordée dans le cadre de ce tutoriel sur les réseaux convolutifs.

Accéder à la vidéo suivante tutoriel : implémenter un réseau de neurones convolutif.

Contributeur expert

Thibault Neveu

Thibault Neveu est jeune chercheur en intelligence artificielle. Il fut membre de la section rech

Partager l'article

Le corpus d’articles arXiv est désormais disponible sur Kaggle

Le corpus d'articles arXiv permet depuis plus de 30 ans à la communauté de chercheurs et au public d'avoir accès aux articles scientifiques dans...

Scikit-learn, SOFA, Coq, Pharo : Inria lance son Academy de formation continue dédiée aux logiciels libres

Inria a présenté fin juillet son nouveau dispositif de formation continue. Centré sur les logiciels libres cette structure permettra l’accès aux grands noms des...

Partenariat Life & Soft et CEA en bio-informatique, génomique, intelligence artificielle et technologies d’imagerie de pointe

Ce 4 août, Life & Soft et le CEA ont présenté officiellement leur accord de collaboration. Signé en avril 2020 pour une durée de...

Machine learning : L’Université d’Oxford et Atos installeront le plus grand super calculateur du Royaume-Uni

Atos et l'Université d'Oxford ont signé un contrat de quatre ans et d'une valeur de 5 millions de livres sterling pour un nouveau supercalculateur de...