Actualité Tutoriel Comprendre les réseaux de neurones convolutifs

Pour approfondir le sujet

Sur le même thème :

FastGCN : Une approche deep learning scalable pour les graphes massifs

Les modèles de réseaux de neurones convolutifs sous forme de graphe (GCN) se montrent particulièrement efficaces dans le cadre de l'apprentissage semi-supervisé. Les chercheurs Jie Chen, Tengfei...

Focus sur trois projets de recherches pour mieux comprendre le comportement animal

Les projets impliquant l'intelligence artificielle et les animaux semblent se développer progressivement. Que ce soit pour lutter contre l'extinction des éléphants d'Afrique, reconnaitre les...

MATLAB 2018b comprend une Deep learning Toolbox

Mathworks a dévoilé la nouvelle version de MATLAB. Cette version 2018b comprend une Deep Learning Toolbox. Elle est focalisée sur le développement d'applications d'intelligence...

Thibault Neveu, chercheur en IA, propose une série de vidéos d’initiation au Deep Learning

Thibault Neveu, chercheur en intelligence artificielle, a créé en septembre 2017 une chaîne de vidéos Youtube consacrée à l'initiation au Deep Learning. Partageant nos valeurs...

Comprendre les réseaux de neurones convolutifs

Thibault Neveu aborde les réseaux à convolution  (CNN), très utilisés dans les applications graphiques (traitement et reconnaissance d’images ou vidéos), mais également dans les systèmes de recommandation.

Les réseaux à convolution sont notamment très utilisés pour l’analyse d’images. Les deux  caractéristiques principales des réseaux convolutifs sont qu’ils utilisent des filtres (kernel) et mettent en oeuvre du pooling.

Les filtres analysent les images zones par zones. Chaque filtre se spécialise de façon à reconnaître des motifs (patterns). Un filtre peut par exemple se spécialiser dans la détection des contours, tandis qu’un autre reconnaîtra certaines formes. La convolution a pour effet d’augmenter la profondeur de la matrice correspondant à l’image, puisque chaque filtre lui ajoutera une couche. Une image qui a une profondeur de 3 couches (le nombre 3 correspondant aux 3 canaux RGB) pourra ainsi résulter en une matrice d’une profondeur de 5, si le réseau convolutif est constitué de 5 filtres.

Le pooling permet quant à lui de réduire la taille d’une image en n’en conservant que les pixels les plus importants. Cela a pour effet de déformer l’image en perdant le positionnement précis des pixels. Cet effet est en fait bénéfique, puisqu’il permet de limiter les risques de surapprentissage. A titre d’exemple, un système de détection des visages aura tout intérêt à apprendre qu’un visage est constitué de deux yeux, d’un nez et d’une bouche, mais il est préférable qu’il n’apprenne pas par coeur l’espacement au pixel près entre ces différents éléments du visage, puisque leur position peut varier d’une personne à l’autre. Il existe d’autres techniques que le pooling, notamment amenées par les capsule Networks, nouvelle technique qui ne sera pas abordée dans le cadre de ce tutoriel sur les réseaux convolutifs.

Accéder à la vidéo suivante tutoriel : implémenter un réseau de neurones convolutif.


1ère Marketplace de l'IA et de la transformation numérique vous recommande :
ZENPLOT® par Addinsoft

Zenplot®, le logiciel de data visualisation dédié aux graphiques avancés zenplot® permet de créer des visualisations impactantes en superposant diffé...

 

Contributeur expert

Thibault Neveu

Thibault Neveu est jeune chercheur en intelligence artificielle. Il fut membre de la section rech

Partager l'article

IA générative : Continental et Google Cloud s’allient pour rendre les véhicules plus intelligents

Continental, qui avait annoncé ce partenariat avec Google Cloud lors de sa conférence de presse à l'IAA MOBILITY 2023, l'a détaillé dans un récent...

Adobe annonce la sortie commerciale de Firefly, sa famille de modèles d’IA générative créative

Fin mars dernier, Adobe présentait lors de son sommet Adobe Firefly, une famille de modèles d’IA générative et lançait la version bêta du premier modèle...

Plan de licenciement chez Onclusive : plus de la moitié des emplois remplacés par l’IA

C'est Libération qui a annoncé le plan de licenciement prévoyant la suppression de 217 postes sur 383 au sein d'Onclusive, une entreprise spécialisée dans...

Stability AI dévoile Stable Audio, son modèle pour la génération de musique et de son

Stability AI, licorne basée à Londres et San Francisco, a connu la notoriété en annonçant en août 2022 la sortie publique du modèle-text-to-image Stable...
Recevoir une notification en cas d'actualité importante    OK Non merci