Intelligence artificielle Formation Python – Machine Learning 13/30 : NumPy : le broadcasting

Pour approfondir le sujet

Sur le même thème :

Deux ans après l’arrivée de ChatGPT, comment la GenAI transforme la recherche en ligne et le marketing

Alors que ChatGPT vient de fêter son second anniversaire et compte aujourd'hui plus de 300 millions d'utilisateurs hebdomadaires, le rapport "Online Search After ChatGPT:...

Llama 3.3 70B : Meta dévoile son dernier ajout à la famille Llama 3, un modèle particulièrement efficace

Alors que Meta prépare le lancement des premiers modèles Llama 4 pour le début de l'année prochaine, l'entreprise a dévoilé en fin de semaine...

AgentLab, un framework open source pour le développement et l’évaluation des agents Web

Lancé par ServiceNow, AgentLab est un framework open source visant à faciliter le développement et l'évaluation d'agents Web. Son objectif principal est de soutenir...

Pleias : des modèles de langages ouverts pour une IA éthique et transparente

Pleias, une start-up française, annonce le lancement de sa première famille de grands modèles de langage (LLM), définissant de nouvelles références en matière...

Formation Python – Machine Learning 13/30 : NumPy : le broadcasting

Ce tutoriel python en français vous présente numpy et une de ses caractéristiques essentielles: Le broadcasting.

Cette technique nous permet de très facilement faire des opérations mathématiques entre plusieurs tableaux numpy à N-dimension (nd array).

Numpy étant développé en C, il présente une rapidité d’execution redoutable, ce qui rend python incroyablement simple et puissant. Avec le broadcasting, on peut également étendre les dimensions de tableaux numpy à N-dimension, lorsque la dimension initiale est égale à 1.

Timecode de la vidéo:

00:32 Qu’est ce que c’est le Broadcasting ? Pourquoi Numpy est si PUISSANT ?!
01:46 Les règles du broadcasting: meme dimensions ou dimension = 1
05:19 Mini exercice de broadcasting
07:27 Exemple en Machine Learning (DANGER)
10:49 Corrigé exercice de la dernière vidéo
12:45 BILAN sur NUMPY

Sommaire de la formation :
[su_menu name=”formation_python_machinelearnia”]

Contributeur expert

Guillaume Saint-Cirgue

Guillaume Saint-Cirgue est Lead Data Scientist à GKNAerospace (Royaume-Uni). Ingénieur généra

Partager l'article

Deux ans après l’arrivée de ChatGPT, comment la GenAI transforme la recherche en ligne et le marketing

Alors que ChatGPT vient de fêter son second anniversaire et compte aujourd'hui plus de 300 millions d'utilisateurs hebdomadaires, le rapport "Online Search After ChatGPT:...

Llama 3.3 70B : Meta dévoile son dernier ajout à la famille Llama 3, un modèle particulièrement efficace

Alors que Meta prépare le lancement des premiers modèles Llama 4 pour le début de l'année prochaine, l'entreprise a dévoilé en fin de semaine...

AgentLab, un framework open source pour le développement et l’évaluation des agents Web

Lancé par ServiceNow, AgentLab est un framework open source visant à faciliter le développement et l'évaluation d'agents Web. Son objectif principal est de soutenir...

Pleias : des modèles de langages ouverts pour une IA éthique et transparente

Pleias, une start-up française, annonce le lancement de sa première famille de grands modèles de langage (LLM), définissant de nouvelles références en matière...