Intelligence artificielle TensorFlow Lattice : un nouvel outil pour les utilisateurs de tensorflow

Pour approfondir le sujet

Sur le même thème :

Sonnet, la bibliothèque de réseau neuronal orientée objet de DeepMind, devient open source

En 2015, Google rendait open source TensorFlow, sa bibliothèque d'apprentissage automatique. La firme a également lancé en open source, en décembre 2016, le projet...

Intelligence artificielle : Faire du Deep Learning en Javascript avec TensorFlow.js

En août 2017, nous vous présentions TensorFire, une librairie javascript permettant de faire du Deep Learning directement depuis votre navigateur internet. L'autre librairie permettant...

Google rend disponible Tensor2Tensor en open source et facilite la recherche grâce au deep learning

Dans un post de blog, l'équipe de Google annonce avoir mis en open source Tensor2Tensor, une nouvelle bibliothèque de deep learning spécialement pensée pour...

Google publie en open source une nouvelle API de détection d’objets TensorFlow

Google a annoncé la publication en open source de l'API TensorFlow Object Detection. Ce framework, intégré à TensorFlow, permet de faciliter l'identification des objets...

TensorFlow Lattice : un nouvel outil pour les utilisateurs de tensorflow

Un problème connu en matière d’apprentissage

Tous les datascientists le savent, il est parfois difficile de s’assurer que l’entraînement d’un modèle se fait correctement lorsque les jeux de données d’entraînement comportent énormément de bruit. Se fier aux données locales risque d’induire le modèle en erreur.

Google vient de publier TensorFlow Lattice afin de s’assurer que le modèle suit bien les tendances globales

Conscient de ce problème, Google vient de publier Tensorflow Lattice. Il permet de s’assurer que le modèle suit bien les tendances souhaitées au lieu de suivre le bruit local et donc d’être induit en erreur. Concrètement, en utilisant tensorflow lattice il est possible de guider le modèle en influençant la courbe de résultats à partir des spéculations des Data Scientists.

Un exemple concret

La vidéo de présentation donne  l’exemple d’une application de recherche de cafétérias. A Tokyo, les personnes à la recherche d’une cafétéria sont principalement des piétons. Ils chercheront donc probablement la cafétéria la plus proche. Tandis qu’au Texas, les utilisateurs utiliseront probablement leur voiture et seront donc plus enclins à parcourir plusieurs kilomètres pour trouver une bonne cafétéria. Lattice permet  de guider le modèle et forcer la tendance de résultats que l’on souhaite obtenir.

Tensorflow Lattice ainsi que son mode d’emploi sont dès à présent disponibles sur GitHub.

La version Release candidate de TensorFlow 1.4 vient d’être publiée par Google par la même occasion.

 
Stephane Nachez

Partager l'article

SystemX crée les « Tech Labs @SystemX » pour accélérer la valorisation et le transfert technologique de ses actifs

SystemX, l’Institut de Recherche Technologique (IRT) dédié à l’ingénierie numérique des systèmes, a annoncé le 16 mai dernier, la mise en place de «...

I-Stem, Généthon et Kantify découvrent une thérapie prometteuse contre les maladies génétiques

Les équipes d’I-Stem et de Généthon, laboratoires de l’Association Française contre les Myopathies (AFM-Téléthon), ont collaboré avec la start-up belge Kantify, spécialisée dans le...

La finale de « Ma thèse en 180 secondes » aura lieu à Lyon le 31 mai prochain

« Ma thèse en 180 secondes » concours qui s'inspire de « Three minute Thesis », conçu à l'Université du Queensland, en Australie, est...

CentraleSupélec et SystemX lancent l’Alliance CircularIT pour mettre le numérique au service de l’économie circulaire

Le 10 mai dernier, CentraleSupélec et l’IRT SystemX ont annoncé la création d'« Alliance CircularIT » afin de « mettre la puissance du numérique...
Recevoir une notification en cas d'actualité importante    OK Non merci