Intelligence artificielle Google AI lance TensorFlow Quantum

Pour approfondir le sujet

Sur le même thème :

MoveNet pour TensorFlow.js : un modèle de deep learning analysant la posture du corps humain depuis le navigateur

Ronny Votel et Na Li de Google Research ont annoncé sur le blog Tensorflow la publication d'un nouveau modèle de détection de postures intitulé...

Microsoft annonce le Project Brainwave pour une intelligence artificielle en temps réel

A l'occasion du HOT CHIPS Symposium, Microsoft a annoncé la création de sa nouvelle plate-forme d'accélération de deep learning. Performance et flexibilité Baptisé Project Brainwave, ce...

OpenAI optimise les GPU afin d’accélérer les réseaux de neurones

OpenAI a dévoilé sur son blog le 6 décembre dernier un programme permettant de construire des réseaux de neurones plus rapides et plus efficaces. Les...

Google dévoile une pré-version de TensorFlow Lite

L'annonce en mai dernier par Google, lors du Google I/0 d'une nouvelle version de TensorFlow pour une utilisation mobile avait fait grand bruit. L'éditeur...

Google AI lance TensorFlow Quantum

Google AI vient d’annoncer le lancement en collaboration avec l’Université de Waterloo, X et Volkswagen, de TensorFlow Quantum, une librairie open source pour le prototypage rapide de modèles de Machine Learning quantique.

Concrétement, TensorFlow Quantum permet l’intégration de la bibliothèque quantique open source Cirq avec TensorFlow. Elle propose des abstractions de haut niveau pour la conception et la mise en œuvre de modèles quantiques compatibles avec les API TensorFlow existantes, ainsi que des simulateurs de circuits quantiques haute performance.

Cette intégration permet de réunir deux univers prometteurs mais qui se rejoignent encore peu, à cause du manque d’outils prévus à cet effet : celui du quantique et celui du machine learning. Ses auteurs espèrent donc que la librairie TensorFlow Quantum facilitera la recherche dans le domaine des modèles de Machine Learning Quantique. TFQ permet d’exploiter des processeurs NISQ de 50 à 100 Qubits.

Les modèles quantiques tirent bénéfices des propriétés de superposition et intrication quantique, ce qui permet de gérer des distributions de probabilités qui nécessiteraient autrement de stocker, gérer et représenter des quantités de données difficiles à gérer avec l’informatique traditionnelle et nécessiteraient des temps de calcul très importants.

Plus que sur du calcul purement quantique, TensorFlow Quantum permet de travailler sur une hybridation entre processeurs quantiques et classiques (CPU, GPU..), ce qui permet de contourner les limitations des processeurs NISQ, fortement bruités.

TFQ met à disposition deux nouveaux types de données primitives :

– Le circuit quantique – Il s’agit d’un circuit quantique défini par Cirq dans TensorFlow. Il permet de créer des lots de circuits de taille variable, similaires à des lots de points de données de valeur réelle différente.
– La Somme des matrices de Pauli – Représente les combinaisons linéaires des produits des tenseurs des opérateurs de Pauli définis dans Cirq.

L’équipe à l’origine de l’outil a utilisé TensorFlow Quantum pour les réseaux neuronaux convolutionnels hybrides quantiques-classiques, l’apprentissage machine pour le contrôle quantique, l’apprentissage par couches pour les réseaux neuronaux quantiques, l’apprentissage de la dynamique quantique, la modélisation générative d’états quantiques mixtes et l’apprentissage de l’apprentissage avec les réseaux neuronaux quantiques via les réseaux neuronaux récurrents classiques.

Le quantique pourrait à terme devenir une piste dans le développement de la faculté pour l’intelligence artificielle de représenter un monde non déterministe, avec une distribution non finie de probabilités, l’un des plus grands enjeux dans l’évolution future de l’intelligence artificielle.  (Voir notre interview de Yann LeCun dans le magazine ActuIA N°1).

En savoir plus : https://www.tensorflow.org/quantum/overview
Publication arXiv : https://arxiv.org/abs/2003.02989

 
ActuIA

Partager l'article

La finale de « Ma thèse en 180 secondes » aura lieu à Lyon le 31 mai prochain

« Ma thèse en 180 secondes » concours qui s'inspire de « Three minute Thesis », conçu à l'Université du Queensland, en Australie, est...

CentraleSupélec et SystemX lancent l’Alliance CircularIT pour mettre le numérique au service de l’économie circulaire

Le 10 mai dernier, CentraleSupélec et l’IRT SystemX ont annoncé la création d'« Alliance CircularIT » afin de « mettre la puissance du numérique...

Le Val de Marne mise sur l’intelligence artificielle pour améliorer son réseau d’assainissement

En novembre 2020, l’agence de l’eau Seine-Normandie lançait l'appel à projets innovation pour la gestion de l’eau, « Transition numérique et économie circulaire »...

RAFAEL vise à devenir la plateforme dédiée au post-Covid de référence en francophonie

La Haute Autorité de Santé, à la date du 19 novembre 2021, déclarait que 10% des malades du Covid-19 développent un covid long, syndrome...
Recevoir une notification en cas d'actualité importante    OK Non merci