Actualité IBM lance en open source sa boite à outils Adversarial Robustness pour...

Pour approfondir le sujet

NVIDIA utilise l’IA pour transformer des vidéos standard en slow motion

NVIDIA a présenté une nouvelle démo de ses recherches en machine learning. Dans un article publié sur son site et via la vidéo ci-dessus, on peut...

Rencontres-Débats de Cannes : Intelligence Artificielle et libertés individuelles

Organisées par l'association culturelle cannoise Arte-Filosofia, ces rencontres-débats rassemblent d'éminents spécialistes de la politique, des médias ou encore de l'économie pour discuter sur les...

Meetup: Deep Learning en pratique: Reconnaissance Automatique de la Parole et bien plus encore…

LINAGORA organisera un meetup consacré au deep learning à Puteaux le 27 septembre prochain. Au programme de ce meetup : • Intelligence Artificielle et Machine Learning •...

TensorFlow 2.0 est désormais disponible

TensorFlow a annoncé ce 30 septembre lors du TensorFlow Dev Summit la mise à disposition de la version finale de TensorFlow 2.0. Piloté par...

IBM lance en open source sa boite à outils Adversarial Robustness pour améliorer la sécurité de l’IA

Les performances de l’intelligence artificielle ne cessent de progresser, il est toutefois encore très facile de l’induire volontairement en erreur, au moyen de ce que l’on appelle une attaque adverse (adversial attack).  Le nouvel outil open source que vient de lancer le laboratoire de recherche d’IBM : L’Adversarial Robustness Toolbox a été pensé de façon à permettre aux développeurs et chercheurs en intelligence artificielle d’analyser les méthodes d’attaque adverse et mettre au point des stratégies de défense.

Proposé sur GitHub depuis quelques jours, le code contient des outils pour que les développeurs et chercheurs puissent tester leurs réseaux de neurones profonds (deep learning) et les sécuriser. Il inclut pour cela une implémentation des méthodes d’attaque et de défense les plus courantes. Comme l’ont indiqué Maria-Irina Nicolae et Mathieu Sinn de l’équipe de recherche d’IBM :

“Les Réseaux de neurones profonds sont des modèles complexes de machine learning présentant une certaine similitude avec les neurones interconnectés du cerveau humain. ILS sont capables de traiter des ENTRées de grande dimension (des millions de pixels dans des images haute résolution par exemple ), représentant dans ces ENTREES des motifs de différents niveaux d’abstraction, et reliant ces représentations à des concepts sémantiques de haut niveau.

Une propriété intrigante des réseaux de neurones profonds est que, bien qu’ils soient normalement très précis, ils sont vulnérables à des exemples dites “adverses” (adversarial). Ces attaques adverses se manifestent sous la forme d’entrées (disons des images) qui ont été délibérément modifiées pour produire une réponse souhaitée par un réseau de neurones”.

Ce type d’attaque adverse (adversarial) constitue une difficulté certaine quant au déploiement de systèmes basés sur l’intelligence artificielle, à cause des risques pour la sécurité. Des altérations d’images, de voix ou encore de vidéos peuvent être développées, sans même connaître l’architecture du réseau de neurones utilisé ou avoir accès à ses paramètres, pour tromper les algorithmes. La bibliothèque open-source proposée par IBM propose donc aux développeurs et aux chercheurs des outils pour se défendre contre ces attaques.

“La boîte à outils Adversarial Robustness est conçue pour aider les chercheurs et les développeurs à concevoir de nouvelles techniques de défense, ainsi qu’à déployer des défenses pratiques des systèmes d’IA. Les chercheurs peuvent utiliser l’Adversarial Robustness Toolbox pour évaluer les nouvelles défenses en comparaison à l’état de l’art. Pour les développeurs, la bibliothèque propose des interfaces qui prennent en charge la composition de systèmes de défense complets en utilisant des méthodes individuelles.

La bibliothèque est écrite en Python, le langage de programmation le plus couramment utilisé pour développer, tester et déployer des réseaux de neurones profonds. Il comprend des algorithmes de pointe pour créer des exemples adversarial ainsi que des méthodes pour défendre les réseaux de neurones contre ces derniers”.

Illustration officielle proposée par IBM Security :

IBM

Johanna Diaz

Partager l'article

Transformation cloud et digitale : Thales élargit son écosystème de partenaires technologiques

Thales a dévoilé de nouveaux partenaires pour aider notamment les entreprises à accélérer, réduire les risques cyber et sécuriser les initiatives de transformation numérique....

Focus sur le projet APRIORICS de l’IUCT-O Toulouse : IA et médecine personnalisée pour lutter contre le cancer du sein

Le projet APRIORICS (Apprentissage Profond Renforcé par l’ImmunohistOchimie pour la Requalification d’Images de Cancers du Sein) a pour objectif d’utiliser l’intelligence artificielle afin de décrire...

Focus pays : Webinaire « L’intelligence artificielle, instrument de relance économique en Tunisie ? »

Le 29 juillet dernier, le ministère de l'industrie et des PME, en collaboration avec le projet Innov’i – EU4Innovation, a organisé un webinaire réunissant...

Le corpus d’articles arXiv est désormais disponible sur Kaggle

Le corpus d'articles arXiv permet depuis plus de 30 ans à la communauté de chercheurs et au public d'avoir accès aux articles scientifiques dans...