Intelligence artificielle Des chercheurs présentent Geomic, une méthode d’apprentissage automatique basée sur la géométrie...

Pour approfondir le sujet

Sur le même thème :

Un modèle de machine learning pour identifier les épaves dans le cadre de recherches en archéologie sous-marine

Leila Character, doctorante en géographie à l'université du Texas à Austin, a développé un modèle d'IA capable de reconnaitre les épaves dans les fonds...

Afrique : la fintech Pngme lève 15 millions de dollars afin de poursuivre son développement sur le continent africain

La fintech africaine PNGme vient d'annoncer une levée de fonds de quinze millions de dollars menée par le fonds d'investissement londonien Octopus Ventures. Ce...

Eagle Eye, un modèle de machine learning pour lutter contre les féminicides

Une initiative présentée à Saint-Domingue a été lancée pour tenter de prévenir les féminicides en République dominicaine. Cette plateforme baptisée Eagle Eye utilise l'intelligence artificielle pour...

Un modèle d’intelligence artificielle permet de réfuter certaines conjectures mathématiques

En mathématiques, une conjecture est un résultat qui semble vrai, mais pour lequel aucune démonstration n'a été trouvée : c'est ce qui la diffère...

Des chercheurs présentent Geomic, une méthode d’apprentissage automatique basée sur la géométrie des données génomiques pour la maladie de Huntington

Maladie héréditaire et rare, la maladie de Huntington touche environ 6000 personnes en France. Elle se traduit par une dégénérescence neurologique provoquant d’importants troubles moteurs, cognitifs et psychiatriques, une perte d’autonomie et le décès du patient. De nombreuses équipes travaillent sur les modalités de diagnostics et de tests de la maladie de Huntington ainsi que sur les pistes thérapeutiques.

Shape deformation analysis reveals the temporal dynamics of cell-type-specific homeostatic and pathogenic responses to mutant huntingtin – Lucile Megret, Barbara Gris, Satish Sasidharan Nair, Jasmin Cevost, Mary Wertz, Jeff Aaronson, Jim Rosinski, Thomas F Vogt, Hilary Wilkinson, Myriam Heiman, Christian Neri, eLife, 23 February 2021. DOI : https://doi.org/10.7554/eLife.64984

L’équipe de recherche (Sorbonne Université/Inserm/CNRS), dirigée par Christian Néri, directeur de recherche Inserm à l’Institut de biologie Paris-Seine, en collaboration avec le MIT (USA), a récemment montré que la perte des mécanismes de compensation et de résilience neuronale à la maladie de Huntington serait le moteur principal de l’évolution de cette maladie au niveau moléculaire. Publiés dans eLife le 23 février 2021 et basés sur une méthode originale d’apprentissage automatique pour l’analyse précise de gros volumes de données génomiques obtenues dans des modèles de la maladie, ces travaux suggèrent que rétablir la résilience neuronale est une piste thérapeutique importante pour une intervention précoce afin de lutter contre cette maladie.

Les cellules de notre corps sont naturellement capables de résister aux maladies grâce à l’homéostasie cellulaire, une série de mécanismes adaptatifs qui réparent les dommages cellulaires, impliquant des centaines de gènes qui rendent nos cellules résilientes. Bien que l’homéostasie recèle un grand potentiel de protection des neurones dans le vieillissement et les maladies neurodégénératives, l’importance et la dynamique des mécanismes homéostatiques dans les maladies neurodégénératives sont restées insaisissables en raison des difficultés d’étude de différents types de cellules dans le cerveau des mammifères.

Récemment, des technologies de criblage génomique ont été utilisées pour interroger comment les différentes cellules du cerveau utilisent des centaines de gènes pour moduler les processus neurodégénératifs. La complexité de ces données les rend cependant difficiles à analyser. En collaboration avec l’équipe de Myriam Heiman au MIT qui a obtenu ces données aux USA et le Laboratoire Jacques-Louis Lions (Sorbonne Université/CNRS), l’équipe de recherche a développé une approche mathématique capable d’identifier précisément les groupes de gènes utilisés dans le cerveau de modèles murins pour contrer les effets toxiques de la huntingtine mutante, le gène de la maladie de Huntington (MH), au fil du temps et dans plusieurs types de neurones composant le striatum, une région du cerveau fortement affectée par la maladie de Huntington.

Les scientifiques ont testé si la mort neuronale dans cette maladie serait principalement due au renforcement des réponses pathogènes ou à la perte des réponses homéostatiques. Répondre à cette question pourrait considérablement modifier notre point de vue sur la meilleure façon de contrer la progression de la maladie de Huntington. Cela pourrait fournir des biomarqueurs pour savoir si une intervention thérapeutique protège le cerveau en bloquant la pathogenèse ou en augmentant l’homéostasie, améliorant ainsi la précision des études précliniques.

Pour ce faire, ils ont mis au point Geomic, une méthode d’apprentissage automatique basée sur la géométrie des données génomiques permettant d’analyser la forme (courbes, surfaces) de l’expression des gènes, et de cartographier la dynamique temporelle des réponses homéostatiques et pathogéniques. De manière inattendue, cette carte montre que la plupart des réponses pathogéniques sont atténuées avec le temps et, qui plus est, que la plupart des réponses homéostatiques diminuent.

Ces résultats suggèrent que la mort neuronale dans la maladie de Huntington serait principalement due à la perte des réponses moléculaires homéostatiques et non au renforcement des réponses moléculaires pathogéniques, soulignant l’importance des processus homéostatiques dans l’évolution de la maladie.

Ces résultats apportent un cadre conceptuel pour explorer le développement de stratégies thérapeutiques axées sur le rétablissement des capacités de résistance des cellules cérébrales à la maladie de Huntington. Ils fournissent une feuille de route pour sélectionner des cibles thérapeutiques pour rétablir la résilience neuronale et des biomarqueurs pour surveiller si les médicaments émergents peuvent engager des mécanismes homéostatiques pour être efficaces, et pour utiliser ces outils dans des modèles expérimentaux de cette maladie. Les conclusions ouvrent la voie à des applications de Geomic à l’analyse des données ‘omiques’ dans plusieurs autres maladies, notamment d’autres maladies neurodégénératives.


1ère Marketplace de l'IA et de la transformation numérique vous recommande :
 
Thomas Calvi

Partager l'article

Laurent Félix devient Directeur Général France d’Ekimetrics

Ekimetrics, spécialiste européen en data science et intelligence artificielle au service des entreprises, a annoncé cette semaine la nomination de Laurent Félix au poste...

Forum de l’évaluation de l’intelligence artificielle : Créer la confiance et valider les performances, ou comment définir un environnement favorable au développement de...

Le Laboratoire national de métrologie et d’essais (LNE) organise le premier forum d'évaluation de l'intelligence artificielle (IA). Cet événement sera l'occasion d'échanger autour du développement de...

Zoom sur l’automatisation des rapports COVID-19 de Santé Publique France par Dynacentrix

L'agence Santé publique France, en charge de la surveillance épidémiologique du covid-19, pilote le système national de veille et d’alerte et de surveillance sanitaire...

Retour sur le lancement de MAESTRIA, plateforme numérique de diagnostic intégratif de la cardiomyopathie auriculaire

Le projet de recherche MAESTRIA (Machine Learning and Artificial Intelligence for Early Detection of Stroke and Atrial Fibrillation) a été officiellement lancé fin septembre....